1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
//! The static library that forms the core of the kernel.
#![no_std]
use crate::arch::{sleep_forever, PAGE_SIZE, PAGE_SIZE_BITS};
use core::ptr::NonNull;
use log::{debug, info, warn};
use vernos_alloc_buddy::BuddyAllocator;
use vernos_alloc_physmem_free_list::FreeListAllocator;
use vernos_device_tree::FlattenedDeviceTree;
use vernos_utils::dbg;
#[cfg(target_os = "none")]
mod panic;
pub mod arch;
pub mod logger;
/// The entrypoint to the kernel. This should be executed by hart0 alone. It performs some early
/// boot tasks, then wakes up any other harts.
///
/// # Safety
///
/// - The `device_tree` pointer must be a valid pointer into physical memory. See
/// `device_tree::FlattenedDeviceTree::from_ptr` for the precise requirements.
/// - This must be called in supervisor mode with paging and traps disabled, but with all traps
/// delegated to supervisor mode.
/// - Any other harts must not be running concurrently with us. TODO: Define their state.
#[no_mangle]
pub unsafe extern "C" fn hart0_boot(device_tree: *const u8) -> ! {
// Set up the logger.
logger::init();
// Parse the DeviceTree.
let flattened_device_tree =
unsafe { FlattenedDeviceTree::from_ptr(device_tree) }.expect("invalid DeviceTree");
// Find the available physical memory areas and initialize the physical memory
// free-list.
let mut physical_memory_free_list = FreeListAllocator::<PAGE_SIZE>::new();
let mut physical_memory_region_count = 0;
flattened_device_tree
.for_each_memory_range::<_, PAGE_SIZE>(|addrs| {
dbg!(&addrs);
let len_bytes = addrs.end - addrs.start;
assert!(addrs.start.trailing_zeros() as usize >= PAGE_SIZE_BITS);
assert!(len_bytes.trailing_zeros() as usize >= PAGE_SIZE_BITS);
// UNWRAP: for_each_memory_range avoids returning the zero address.
let addr = NonNull::new(addrs.start as *mut [u8; PAGE_SIZE]).unwrap();
let len_pages = len_bytes >> PAGE_SIZE_BITS;
physical_memory_free_list.add(addr, len_pages);
physical_memory_region_count += 1;
Ok(())
})
.unwrap_or_else(|err| void::unreachable(err));
// Log the physical memory we found.
debug!(
"found {} usable regions of physical memory{}",
physical_memory_region_count,
if physical_memory_region_count == 0 {
""
} else {
":"
}
);
for (addr, len_pages) in physical_memory_free_list.iter() {
debug!(
"{:p}..{:p} ({} bytes)",
addr.as_ptr(),
addr.as_ptr().wrapping_add(len_pages),
len_pages << PAGE_SIZE_BITS,
)
}
// Initialize the buddy allocator.
let alloc_buddy =
BuddyAllocator::<PAGE_SIZE, PAGE_SIZE_BITS, 19>::new(physical_memory_free_list)
.expect("failed to configure the buddy allocator");
dbg!(alloc_buddy.debug_free_lists());
// After this point, everything else is for debugging.
#[cfg(target_arch = "riscv64")]
{
flattened_device_tree
.for_each_node(|node| {
if node.is_unit(&["", "cpus"]) {
if let Some(timebase_frequency) = node.get_prop_u32("timebase-frequency") {
// SAFETY: Other harts are not concurrently running, so they can't be
// concurrently accessing or modifying this.
unsafe {
vernos_driver_riscv_timer::TIMEBASE_FREQUENCY = timebase_frequency;
}
}
}
Ok(())
})
.unwrap_or_else(|err| void::unreachable(err));
arch::interrupts::example_timer();
}
info!("sleeping forever...");
sleep_forever();
}
|